145 research outputs found

    Quality assessment of restored satellite data based on signal to noise ratio

    Get PDF
    A practical concept of assessing the quality of restored data based on signal to noise ratio (SNR) is reported. The data come from remote sensing satellite and has undergone restoration process due to atmospheric haze effects. The restoration involves removing haze mean due to haze scattering and haze randomness due to haze spatial variability. The results shows that the SNR of restored data can be computed if the haze mean and haze randomness components are known

    The Interaction Between Faraday Rotation and System Effects in Synthetic Aperture Radar Measurements of Backscatter and Biomass

    Get PDF
    For long-wavelength space-based radars, such as the P-band radar on the recently selected European Space Agency BIOMASS mission, system distortions (crosstalk and channel imbalance), Faraday rotation, and system noise all combine to degrade the measurements. A first-order analysis of these effects on the measurements of the polarimetric scattering matrix is used to derive differentiable expressions for the errors in the polarimetric backscattering coefficients in the presence of Faraday rotation. Both the amplitudes and phases of the distortion terms are shown to be important in determining the errors and their maximum values. Exact simulations confirm the accuracy and predictions of the first-order analysis. Under an assumed power-law relation between σhv and the biomass, the system distortions and noise are converted into biomass estimation errors, and it is shown that the magnitude of the deviation of the channel imbalance from unity must be 4-5 dB less than the crosstalk, or it will dominate the error in the biomass. For uncalibrated data and midrange values of biomass, the crosstalk must be less than -24 dB if the maximum possible error in the biomass is to be within 20% of its true value. A less stringent condition applies if the amplitudes and phases of the distortion terms are considered random since errors near the maximum possible are very unlikely. For lower values of the biomass, the noise becomes increasingly important because the σhv signal-to-noise ratio is smaller

    The Impact of System Effects on Estimates of Faraday Rotation From Synthetic Aperture Radar Measurements

    Get PDF
    Radio waves traversing the Earth's ionosphere suffer from Faraday rotation with noticeable effects on measurements from lower frequency space-based radars, but these effects can be easily corrected given estimates of the Faraday rotation angle, i.e., Ω. Several methods to derive Ω from polarimetric measurements are known, but they are affected by system distortions (crosstalk and channel imbalance) and noise. A first-order analysis for the most robust Faraday rotation estimator leads to a differentiable expression for the bias in the estimate of Ω in terms of the amplitudes and phases of the distortion terms and the covariance properties of the target. The analysis applies equally to L-band and P-band. We derive conditions on the amplitudes and phases of the distortion terms that yield the maximum bias and a compact expression for its value for the important case where Ω = 0. Exact simulations confirm the accuracy of the first-order analysis and verify its predictions. Conditions on the distortion amplitudes that yield a given maximum bias are derived numerically, and the maximum bias is shown to be insensitive to the amplitude of the channel imbalance terms. These results are important not just for correcting polarimetric data but also for assessing the accuracy of the estimates of the total electron content derived from Faraday rotation

    Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis

    Get PDF
    Two methods of cloud masking tuned to tropical conditions have been developed, based on spectral analysis and Principal Components Analysis (PCA) of Moderate Resolution Imaging Spectroradiometer (MODIS) data. In the spectral approach, thresholds were applied to four reflective bands (1, 2, 3, and 4), three thermal bands (29, 31 and 32), the band 2/band 1 ratio, and the difference between band 29 and 31 in order to detect clouds. The PCA approach applied a threshold to the first principal component derived from the seven quantities used for spectral analysis. Cloud detections were compared with the standard MODIS cloud mask, and their accuracy was assessed using reference images and geographical information on the study area

    Self-consistent modelling of the polar thermosphere and ionosphere to magnetospheric convection and precipitation (invited review)

    Get PDF
    It has recently been demonstrated that the dramatic effects of plasma precipitation and convection on the composition and dynamics of the polar thermosphere and ionosphere include a number of strong interactive, or feedback, processes. To aid the evaluation of these feedback processes, a joint three dimensional time dependent global model of the Earth's thermosphere and ionosphere was developed in a collaboration between University College London and Sheffield University. This model includes self consistent coupling between the thermosphere and the ionosphere in the polar regions. Some of the major features in the polar ionosphere, which the initial simulations indicate are due to the strong coupling of ions and neutrals in the presence of strong electric fields and energetic electron precipitation are reviewed. The model is also able to simulate seasonal and Universal time variations in the polar thermosphere and ionospheric regions which are due to the variations of solar photoionization in specific geomagnetic regions such as the cusp and polar cap

    Assessment of a power law relationship between P-band SAR backscatter and aboveground biomass and its implications for BIOMASS mission performance

    Get PDF
    This paper presents an analysis of a logarithmic relationship between P-band cross-polarized backscatter from synthetic aperture radar (SAR) and aboveground biomass (AGB) across different forest types based on multiple airborne datasets. It is found that the logarithmic function provides a statistically significant fit to the observed relationship between HV backscatter and AGB. While the coefficient of determination varies between datasets, the slopes, and intercepts of many of the models are not significantly different, especially when similar AGB ranges are assessed. Pooled boreal and pooled tropical data have slopes that are not significantly different, but they have different intercepts. Using the power law formulation of the logarithmic relation allows estimation of both the equivalent number of looks (ENL) needed to retrieve AGB with a given uncertainty and the sensitivity of the AGB inversion. The campaign data indicates that boreal forests require a larger ENL than tropical forests to achieve a specified relative accuracy. The ENL can be increased by multichannel filtering, but ascending and descending images will need to be combined to meet the performance requirements of the BIOMASS mission. The analysis also indicates that the relative change in AGB associated with a given backscatter change depends only on the magnitude of the change and the exponent of the power law, and further implies that to achieve a relative AGB accuracy of 20% or better, residual errors from radiometric distortions produced by the system and environmental effects must not exceed 0.43 dB in tropical and 0.39 dB in boreal forests

    Sentinel-1 observation frequency significantly increases burnt area detectability in tropical SE Asia

    Get PDF
    Frequent cloud cover in the tropics significantly affects the observation of the surface by satellites. This has enormous implications for current approaches that estimate greenhouse gas (GHG) emissions from fires or map fire scars. These mainly employ data acquired in the visible to middle infrared bands to map fire scars or thermal data to estimate fire radiative power and consequently derive emissions. The analysis here instead explores the use of microwave data from the operational Sentinel-1A (S-1A) in dual-polarisation mode (VV and VH) acquired over Central Kalimantan during the 2015 fire season. Burnt areas were mapped in three consecutive periods between August and October 2015 using the random forests machine learning algorithm. In each mapping period, the omission and commission errors of the unburnt class were always below 3%, while the omission and commission errors of the burnt class were below 20% and 5% respectively. Summing the detections from the three periods gave a total burnt area of ~1.6 million ha, but this dropped to ~1.2 million ha if using only a pair of pre- and post-fire season S-1A images. Hence the ability of Sentinel-1 to make frequent observations significantly increases fire scar detection. Comparison with burnt area estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) burnt area product at 5 km scale showed poor agreement, with consistently much lower estimates produced by the MODIS data-on average 14%–51% of those obtained in this study. The method presented in this study offers a way to reduce the substantial errors likely to occur in optical-based estimates of GHG emissions from fires in tropical areas affected by substantial cloud cover

    Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    Get PDF
    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties). We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations
    • …
    corecore